Improving the Classification Performance of Liquid State Machines Based on the Separation Property
نویسندگان
چکیده
Liquid State Machines constitute a powerful computational tool for carrying out complex real time computations on continuous input streams. Their performance is based on two properties, approximation and separation. While the former depends on the selection of class functions for the readout maps, the latter needs to be evaluated for a particular liquid architecture. In the current paper we show how the Fisher’s Discriminant Ratio can be used to effectively measure the separation of a Liquid State Machine. This measure is then used as a fitness function in an evolutionary framework that searches for suitable liquid properties and architectures in order to optimize the performance of the trained readouts. Evaluation results demonstrate the effectiveness of the proposed
منابع مشابه
Use of the separation property to derive Liquid State Machines with enhanced classification performance
Liquid State Machines constitute a powerful computational tool for carrying out complex real time computations on continuous input streams. Their performance is based on two properties, approximation and separation. While the former depends on the selection of class functions for the readout maps, the latter needs to be evaluated for a particular liquid architecture. In the current paper we sho...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملLiquid state machines and cultured cortical networks: The separation property
In vitro neural networks of cortical neurons interfaced to a computer via multichannel microelectrode arrays (MEA) provide a unique paradigm to create a hybrid neural computer. Unfortunately, only rudimentary information about these in vitro network's computational properties or the extent of their abilities are known. To study those properties, a liquid state machine (LSM) approach was employe...
متن کاملکاربرد الگوریتمهای دادهکاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد
Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...
متن کاملImproving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011